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Boundary susceptibilities of the Hubbard model in open
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Hitoshi Asakawa and Masuo Suzuki

Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Received 16 July 1996

Abstract. Boundary contributions to the magnetization and the electron density are evaluated
analytically, near the half-filling and non-magnetic region. Boundary susceptibilities in the
spin and the charge sectors are also calculated. The boundary magnetization approaches zero
logarithmically as the magnetic field goes to zero. The boundary charge susceptibility diverges
like the bulk compressibility when the filling goes to unity.

1. Introduction

Recently, one-dimensional strongly correlated systems with boundaries have attracted much
attention. Some of these systems can be exactly solved by deriving Bethe-ansatz equations;
for example, theXXZ model [1, 2], the interacting boson model [3], the interacting fermion
model [4, 5] and the Hubbard model [6, 7]. Using the Bethe-ansatz equations, finite-size
corrections of the ground-state energies have been calculated [5, 7, 8] to discuss critical
phenomena in such systems with boundaries. Moreover, boundary contributions to physical
quantities have also been evaluated in some exactly solvable models, for example, theXXZ

model [9], the supersymmetrict–J model [10].
In the present study, we discuss the Hubbard model in open chains described by

H = −
L−1∑
j=1

∑
σ=±

(c
†
jσ cj+1σ + c

†
j+1σ cjσ )+ 4u

L∑
j=1

nj+nj−

+µ
L∑
j=1

(nj+ + nj−)− h

2

L∑
j=1

(nj+ − nj−) (1.1)

with njσ = c
†
jσ cjσ andu > 0. Here, the symbolcjσ denotes the annihilation operator of the

electron with spinσ at sitej .
We evaluate the boundary magnetization (mb) and the boundary electron density (nb)

in the ground state, which are defined by

mb ≡ − ∂

∂h
(E

open
L − E

periodic
L ) for L � 1 (1.2)

nb ≡ ∂

∂µ
(E

open
L − E

periodic
L ) for L � 1. (1.3)
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Here, we describe the ground-state energy in the Hubbard chain withL sites under the
open (or periodic) boundary condition by the symbolE

open
L (or Eperiodic

L ). We also define
the boundary spin susceptibility and the boundary charge susceptibility, as follows,

χb
s = ∂mb

∂h
and χb

c = −∂n
b

∂µ
(1.4)

respectively.
As is well known, the bulk contributions to the magnetization (or spin susceptibility)

[11, 12] and the electron density (or charge susceptibility) [13] have been discussed in detail,
using the Lieb–Wu solution [14] which is given by the Bethe-ansatz equation of the Hubbard
model with the periodic boundary condition. On the other hand, in the present study, we
use the the Bethe-ansatz equation of the Hubbard model with the open boundary condition
[6] to derivemb andnb, analytically. Our strategy is as follows.

Now, we remember that the following expressions

E
periodic
L

L
= 1

2π

∫ +k0

−k0

dk εc(k)+ O

(
1

L2

)
(1.5)

have already been obtained for the periodic-boundary case [15] and

E
open
L

L
= 1

2π

∫ +k0

−k0

dk εc(k)+ 1

L

(
1 − µ

2
− h

4

)
+ 1

2L

∫ +k0

−k0

dk εc(k)

(
1

π
− a1(sink) cosk

)
+ 1

2L

∫ +λ0

−λ0

dλ εs(λ)a2(λ)+ O

(
1

L2

)
(1.6)

for the open-boundary case [7] with

aν(x) = 1

2π

2νu

(νu)2 + x2
. (1.7)

In both cases, the symbolsεc(k) andεs(λ) denote the dressed energies [15, 7] in the charge
and spin sectors, respectively, which are defined by

εc(k) = ε(0)c (k)+
∫ +λ0

−λ0

dλ a1(sink − λ)εs(λ) (1.8)

εs(λ) = ε(0)s (λ)+
∫ +k0

−k0

dk coska1(λ− sink)εc(k)−
∫ +λ0

−λ0

dλ′ a2(λ− λ′)εs(λ
′) (1.9)

with

ε(0)c (k) = µ− h

2
− 2 cosk ε(0)s (λ) = h. (1.10)

Here, we determine the parametersk0 andλ0 by

εc(k0) = 0 and εs(λ0) = 0. (1.11)

For example,λ0 = ∞ for h = 0, or k0 = π for the half-filling, as is well known.
By using equations (1.8)–(1.10), we rewriteEopen

L to obtain

E
open
L − E

periodic
L = f + O

(
1

L

)
f ≡ e + 1 − µ

2
+ h

4
− 1

2
εs(0) (1.12)

wheree denotes the ground-state energy per site forL → ∞ [15], namely

e ≡ 1

2π

∫ +k0

−k0

dk εc(k). (1.13)
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Then we find

mb = −∂f
∂h

and nb = ∂f

∂µ
. (1.14)

Therefore, we only have to concentrate our attention on the dressed energies in order to
evaluatef , and therebymb andnb.

In the present paper, we discuss the following special cases,

Case 1. Half-filling case with a weak magnetic field.

Case 2. Nearly-half-filling case without magnetic field.

In section 2, we derive the boundary magnetization and the spin susceptibility for case 1.
In section 3, we calculate the boundary density and the charge susceptibility for case 2. In
our calculations, we adopt some techniques used by Essler [10] and by Frahm and Korepin
[15, 16]. In section 4, we phenomenologically rederive the results obtained in section 2.
Finally, we discuss the results thus obtained in section 5.

2. Boundary magnetization and boundary spin susceptibility

In the present section, we evaluate boundary contributions of the magnetization and the spin
susceptibility at the half-filling. The half-filling case corresponds tok0 = π . We can putµ
to zero, since the number of electron is fixed.

In the present case, the integral equations (1.8) and (1.9) can be reduced to the following
forms,

εc(k) = −h
2

− 2 cosk +
∫ +λ0

−λ0

dλ a1(sink − λ)εs(λ) (2.1)

and

εs(λ) = h−
∫ +π

−π
dk 2 cos2 ka1(sink − λ)−

∫ +λ0

−λ0

dλ′ a2(λ− λ′)εs(λ
′) (2.2)

where equation (2.2) can be obtained by substituting (1.8) into (1.9) withk0 = π andµ = 0.
By the Wiener–Hopf method, the following result can be obtained [15],

ỹ+(ω) = G+(ω)
i√
2

(
h

ω + i0
− h0e− π

2u λ0

ω + π
2u i

)
+

(
less dominant terms

for largeλ0

)
(2.3)

with

G+(ω) =
√

2π

(−i uω
eπ

)−i uω
π

0
(

1
2 − i uω

π

) h0 = 4

√
2π

e
I1

( π
2u

)
(2.4)

where

ỹ+(ω) =
∫ ∞

0
dx eixωy(x) y(x) ≡ εs(λ0 + x). (2.5)

Here,Iν(x) denotes the modified Bessel function of the first kind, i.e.

Iν(x) ≡ (x/2)ν√
π0(ν + 1

2)

∫ π

0
dk ex cosk sin2ν k.
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Frahm and Korepin have already obtained (2.3) in [15], although they have not shown
the explicit form of ỹ+(ω). In appendix A, we briefly review this derivation. Using this
expression,εs(λ0) = y+(0) can be calculated as follows,

y+(0) = −i lim
ω→∞ωỹ

+(ω) = 1√
2
(h− h0e− π

2u λ0)+
(

less dominant terms
for largeλ0

)
. (2.6)

By solving the equationεs(λ0) = 0, we can obtain the following relationship betweenλ0

andh [15], apart from higher-order corrections,

λ0 ' 2u

π
ln
h0

h
. (2.7)

In order to evaluateεc(k), we have to calculate the integral in (2.1). Now, we remark
that the Fourier transformation ofεs(λ) takes the following form, (see equation (2.2))

ε̃s(ω) = πhδ(ω)− 2
∫ +π

−π
dk cos2 k

eiω sink

eu|ω| + e−u|ω| + e−u|ω|

eu|ω| + e−u|ω|

∫
|λ′|>λ0

dλ′ eiλ′ωεs(λ
′).

(2.8)

In the present paper, by the symbolf̃ (ω) we describe the Fourier transformation of a
function f (λ), for example,

ãν(ω) ≡
∫ +∞

−∞
dλ aν(λ) = e−νu|ω| (ν > 0). (2.9)

Taking equation (2.8) into account, we can rewrite the integral in (2.1) as follows,∫ +λ0

−λ0

dλ a1(sink − λ)εs(λ) =
∫ +∞

−∞

dω

2π
e−iω sinkã1(ω)ε̃s(ω)−

∫
|λ|>λ0

dλ a1(sink − λ)εs(λ)

= h

2
− 2

∫ +π

−π
dk′ R(sink − sink′) cos2 k′

+
∫

|λ′|>λ0

dλ′ (A2(sink − λ′)− a1(sink − λ′))εs(λ
′) (2.10)

where

Aν(x) ≡
∫ +∞

−∞

dω

2π

e−νu|ω|

eu|ω| + e−u|ω| e
−ixω (2.11)

and

R(x) ≡
∫ +∞

−∞

dω

2π

e−ixω

e2u|ω| + 1
(= A1(x)). (2.12)

We remark that the relationship

An+1(x)+ An−1(x) = an(x) (2.13)

holds. Especially, we find that

A2(x)− a1(x) = −A0(x) = −
∫ +∞

−∞

dω

2π

eixω

2 cosh(uω)
= −1

4u

1

cosh( π2ux)
. (2.14)

We substitute (2.10) into (2.1) to obtain

εc(k) = −2 cosk − 2
∫ +π

−π
dk′ R(sink − sink′) cos2 k′ + I(k) (2.15)
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using the relation (2.14), where

I(k) ≡ − 1

4u

∫
|λ|>λ0

dλ
εs(λ)

cosh π
2u (sink − λ)

. (2.16)

We evaluate the leading term with respect toh (∼ 0). According the the relationship (2.7),
λ0 is extremely large for smallh. Taking this fact into account, we can evaluateI(k) as
follows,

I(k) = −1

4u

∫ ∞

0
dν

(
1

cosh π
2u (λ0 + ν − sink)

+ 1

cosh π
2u (λ0 + ν + sink)

)
εs(λ0 + ν)

' −1

2u

∫ ∞

0
dν

(
exp

(−π
2u
(λ0 + ν − sink)

)
+ exp

(−π
2u
(λ0 + ν + sink)

) )
y(ν)

= − 1

u
cosh

(
π sink

2u

)
e− π

2u λ0ỹ+
(

iπ

2u

)
. (2.17)

Using equations (2.3) and (2.7), we can rewrite this formula to obtain the leading term with
respect toh as follows,

I(k) = − 1

u
cosh

(
π sink

2u

) √
π

2e

u

π

h2

h0
+ o(h2). (2.18)

From equations (1.13), (2.15) and (2.18), we evaluate the quantitye in the following way,

e = e0 − 1

8π

I0(
π
2u )

I1(
π
2u )
h2 + o(h2) (2.19)

with

e0 = −2
∫ +∞

−∞
dω

J0(ω)J1(ω)

ω(e2u|ω| + 1)
(2.20)

whereJn(x) denotes the Bessel function of the first kind, namely

Jn(x) ≡ 1

2π

∫ 2π

0
dk cos(x sink − nk).

Here,e0 denotes the ground-state energy at half-filling without magnetic field [14].
Before going ahead in our calculations, we give a comment. Sincee denotes the ground-

state energy per site in the bulk, we can derive the magnetization and the spin susceptibility
in the bulk as follows,

m = − ∂e
∂h

' 1

4π

I0(
π
2u )

I1(
π
2u )
h (2.21)

χs = ∂m

∂h
' 1

4π

I0(
π
2u )

I1(
π
2u )

(2.22)

in the limit h → 0. As is well known, this result has been obtained in another way [11, 12].
(This quantity does not depend on the boundary condition.)

Next, we evaluateεs(0). For this purpose, we calculate the integral in the following
equation, (see equation (2.2))

εs(0) = h− hc −
∫ +λ0

−λ0

dλ a2(λ)εs(λ). (2.23)
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Here,hc is defined by

hc =
∫ +π

−π
dk 2 cos2 k a1(sink) = 4

(√
u2 + 1 − u

)
(2.24)

and denotes the critical field, at which the magnetization is saturated. These kinds of critical
fields in various solvable models have been discussed in detail by one of the present authors
(MS) [17]. We evaluateεs(0) as follows,

εs(0) = h− hc −
∫ +∞

−∞

dω

2π
ã2(ω)ε̃s(ω)+

∫
|λ|>λ0

dλ a2(λ)εs(λ)

= h

2
− 2e1 − 2

∫ ∞

λ0

dλ (A3(λ)− a2(λ))εs(λ) (2.25)

with

e1 ≡
∫ +π

−π
dk

∫ +∞

−∞

dω

2π

cos2 keiω sink

eu|ω| + e−u|ω| . (2.26)

In this calculation, we have used equation (2.8). As preliminaries in the following
calculations, we asymptotically expandAn(λ) for λ � 1,

Ax(λ) = 1

2u
Gx

(
λ

2u

)
= u

2π

x

λ2
+ O

(
1

λ4

)
(2.27)

where

Gx(λ) =
∫ +∞

−∞

dω

2π
e−iωλ e−x |ω|

2

2 coshω2
= 1

π
Re

(
β

(
1 + x

2
+ iλ

))
β(z) ≡ 1

2

(
ψ

(
1 + z

2

)
− ψ

( z
2

))
ψ(z) = d

dz
ln0(z).

(2.28)

Taking equations (2.13), (2.5) and (2.27) into account, we evaluate (2.25) as follows

εs(0) = h

2
− 2e1 + 2

∫ ∞

0
dν A1(ν + λ0)y(ν)

= h

2
− 2e1 + u

π

∫ ∞

0
dν

(
1

(ν + λ0)2
+ O

(
1

(ν + λ0)4

))
. (2.29)

Moreover, by the formula (the Laplace transformation),

0(α + 1)

(ν + λ0)α+1
=

∫ ∞

0
dte−νte−λ0t tα for Re(α) > −1 (2.30)

we find that∫ ∞

0
dν

1

(ν + λ0)2
y(ν) =

∫ ∞

0
dt e−λ0t t ỹ+(it) = h

λ0
+

(
higher order terms
with respect toh

)
. (2.31)

In evaluating the integral, we have expandedỹ+(ω) aroundω = 0, namely

ỹ+(ω) = ih

ω
+ (less dominant terms) for ω ∼ 0 (2.32)

since the leading contribution to the integral comes from the region aroundt = 0 due to the
strongly dumping factor e−λ0t . This technique has also been used in [10]. Then we have

εs(0) = h

2
− 2e1 − h

2

1

ln(h/h0)
+ o

(
h

lnh

)
. (2.33)
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Substituting the terms thus evaluated intof (1.12), we obtain

f = e0 +
(

− 1

8π

I0(
π
2u )

I1(
π
2u )
h2 + o(h2)

)
+ 1 + e1 +

(
h

4

1

ln(h/h0)
+ o

(
h

lnh

))
. (2.34)

Deriving f , we can obtain the boundary magnetization and the boundary susceptibility
as follows,

mb = −∂f
∂h

' −1

4

1

ln(h/h0)
(2.35)

and

χb
s = ∂mb

∂h
' 1

4h(ln(h/h0))2
(2.36)

for smallh.
By the same way, we can evaluate the boundary magnetization and the boundary

susceptibility for the arbitrary-filling case withu � 1, to obtain the same results as (2.35)
and (2.36), apart from the definition ofh0.

3. Boundary density and boundary charge susceptibility

In the present section, we discuss the boundary contributions of the density and the charge
susceptibility (compressibility) forh = 0, namelyλ0 = ∞.

In the present case, the integral equations (1.8) and (1.9) can be reduced to the following
form,

εc(k) = µ− 2 cosk +
∫ +∞

−∞
dλ a1(sink − λ)εs(λ) (3.1)

εs(λ) =
∫ +k0

−k0

dk coska1(λ− sink)εc(k)−
∫ +∞

−∞
dλ′ a2(λ− λ′)εs(λ

′). (3.2)

By the Fourier transformation of equation (3.2), we can obtain the following equation,

ε̃s(ω) = e−u|ω|

1 + e−2u|ω|

∫ +k0

−k0

dk coskeiω sinkεc(k). (3.3)

Using equations (3.1) and (3.3), we have

εc(k) = µ− 2 cosk +
∫ +k0

−k0

dk′ R(sink − sink′) cosk′εc(k
′). (3.4)

Moreover, we can rewrite this equation into the following form,

εc(k) = µ− 2 cosk − 2
∫ +π

−π
dk′ R(sink − sink′) cos2 k′ + J (k) (3.5)

with

J (k) ≡ −
∫
k0<|k′|<π

dk′ R(sink − sink′) cosk′εc(k
′). (3.6)

We discuss the nearly half-filling case, namely 0< π − k0 � 1. We find thatJ (k) is of the
order(π − k0)

2 at most, because of the conditionεc(k0) = 0. Taking this fact into account,
we can derive the following,

ε′(k0) = 2(1 + C1)(π − k0)+ O((π − k0)
2) (3.7)
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and

ε′′(k0) = −2(1 + C1)+ O((π − k0)
1) (3.8)

with

C1 ≡
∫ +π

−π
dk sinkR′(sink). (3.9)

Using equations (3.7) and (3.8), we can expandJ (k) with respect to the small quantity
(π − k0) to have

J (k) = 4
3(π − k0)

3R(sink)(1 + C1)+ O((π − k0)
4). (3.10)

Next, we discuss the relationship betweenµ− µ0 andπ − k0, where the symbolµ0 denotes
the chemical potential at the half-filling. The conditionεc(k0) = 0 yields the relationship

0 = µ− 2 cosk0 − 2
∫ +π

−π
dk′ R(sink0 − sink′) cos2 k′ + J (k0). (3.11)

We remark that the following equation also holds,

0 = µ0 + 2 − 2
∫ +π

−π
dk′ R(− sink′) cos2 k′. (3.12)

Subtracting equation (3.12) from equation (3.11), we obtain

0 = µ− µ0 − 2(cosk0 + 2)− 2
∫ +π

−π
dk′ (R(sink0 − sink′)− R(− sink′))+ J (k0)

= µ− µ0 − {(π − k0)
2(1 + C1)+ O((π − k0)

3)} (3.13)

namely, apart from higher order terms,

π − k0 '
√
µ− µ0

1 + C1
. (3.14)

For the later calculations, we need to evaluate the quantitiesεc(π), ε′
c(π) and ε′′

c(π), as
follows,

εc(π) = µ− µ0 + O((π − k0)
3) = (1 + C1)(π − k0)

2 + O((π − k0)
3)

ε′
c(π) = 0 + O((π − k0)

3) and ε′′
c(π) = −2(1 + C1)+ O((π − k0)

3).
(3.15)

Using the above results, we can evaluatee defined in equation (1.13). Expanding the
upper and the lower edges in the integral region aroundπ and−π , respectively, we have

e = e0 + µ− 2

3π
(1 + C1)(1 − C0)(π − k0)

3 + O((π − k0)
4) (3.16)

= e0 + µ− 2

3π

1 − C0√
1 + C1

(µ− µ0)
3
2 + o((µ− µ0)

3
2 ) (3.17)

where

C0 ≡
∫ +π

−π
dk R(sink). (3.18)

In this calculation, we have used relations in equation (3.15).
Before going further, we give a short remark. We derive the electron density and the

charge susceptibility in the bulk as follows,

n = ∂e

∂µ
' 1 − 1

π

1 − C0√
1 + C1

√
µ− µ0 (3.19)

χc = − ∂n

∂µ
' 1

2π

1 − C0√
1 + C1

1√
µ− µ0

= α

1 − n
(3.20)
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where

α ≡ 1

2π2

(1 − C0)
2

1 + C1
. (3.21)

This form ofχc has been obtained by another scheme in [13].
Next, we evaluateεc(0). This quantity can be expressed in the following integral form

εc(0) =
∫ +∞

−∞

dω

2π
ε̃c(ω) =

∫ +k0

−k0

dk εc(k)
1

4u

cosk

cosh
(
π
2u sink

) . (3.22)

Here, we have used equation (3.3) and performed the integration with respect toω. By
expanding the edges of the integral region in equation (3.22) aroundk0 = π , we obtain

εs(0) = −2e1 + 1

3u
(1 + C1)(π − k0)

3 + O((π − k0)
4) (3.23)

= −2e1 + 1

3u

1√
1 + C1

(µ− µ0)
3
2 + o((µ− µ0)

3
2 ) (3.24)

wheree1 has been defined in equation (2.26).
Substituting the results thus obtained inf (1.12), we have

f = e0 + e1 + 1 + µ

2
− 2

3π

1 − C0√
1 + C1

(1 + γ )(µ− µ0)
3
2 + o((µ− µ0)

3
2 ) (3.25)

where

γ ≡ π

4u

1

1 − C0
. (3.26)

Then, we calculate the electron density and the charge susceptibility in the boundary as
follows,

nb = ∂f

∂µ
' 1

2
− 1

π

1 − C0√
1 + C1

(1 + γ )
√
µ− µ0 (3.27)

and

χb
c = −∂n

b

∂µ
' 1

2π

1 − C0√
1 + C1

(1 + γ )
1√

µ− µ0
= α(1 + γ )

1 − n
. (3.28)

4. Phenomenological derivation of the boundary magnetization

In section 2, we have shown that the boundary magnetization is proportional to−1/ lnh for
a small magnetic fieldh. In the present section, we rederive the result phenomenologically,
and discuss the meaning of the logarithmic dependence.

In the present model with open boundaries, finite-size corrections for the energy
spectrum of the spin sector are given by [7]

E = πv

L

(
1

2

(1M)2

ξ2
+N+ − 1

24

)
+ o

(
1

L

)
(4.1)

where1M takes integers andN+ takes positive integers. The degeneracy with respect to
N+ is given by the partition numberP(N+). We have already subtracted the contributions
of ordersL1 andL0 from the ground-state energy. The quantity1M corresponds to the
deviation of the total magnetization (z-component) from its ground-state value. The quantity
ξ is a function of the external fieldh, and takes 1/

√
2 for h = 0. This means that the spin
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sector of the Hubbard model with open boundaries is described by the chiralSU(2) Kac–
Moody algebra (level 1). (If the Hubbard with open boundaries is defined in a chain with
lengthL, the corresponding chiral field lives in a periodic chain with length 2L.)

The finite-size scaling form (4.1) yields the following partition function

Z = 1

η(q)

∑
N∈Z

q
N2

2ξ2 q ≡ exp
(
− πv

T L

)
. (4.2)

By the Poisson sum formula, we can rewrite the above partition function into the following
form

Z = ξ

η(p)

∑
n∈Z

p
ξ2n2

2 p ≡ exp

(
−4πT L

v

)
. (4.3)

Here, we have definedη(q) by

η(q) ≡ q
1
24

∞∏
n=1

(1 − qn). (4.4)

From equation (4.1), we can read off the susceptibility per site in the relevant system with
open boundaries asχ = ξ2/(πv). Therefore, using the bulk quantityχ , we can describeξ
as follows:

ξ(h) =
√
πvχ(h). (4.5)

We find that this relation holds not only in the periodic boundary case but also in the open
boundary case, as it should be. In quantum systems described by theSU(2) Kac–Moody
algebra (level 1), the susceptibility universally behaves as

χ(h) = 1

2πv

(
1 + 1

2

1

ln 1/h

)
+ o

(
1

ln 1/h

)
(4.6)

for a smallh [20]. (This form ofχ has been derived under the periodic boundary condition
[20]. However, equation (4.6) holds even in the open-boundary case since the bulk quantity
χ does not depend on the boundary condition.) Then, we substitute (4.6) into (4.5) to obtain

ξ(h) = 1√
2

(
1 + 1

4

1

ln 1/h

)
+ o

(
1

ln 1/h

)
. (4.7)

Using the partition function (4.3), we can evaluate the part of orderL0 in the free
energy, as follows,

f (h) = −T ln ξ(h). (4.8)

Therefore, the singular part of the boundary free energy can be obtained as

fboundary≡ f (h)− f (0) = −T ln

(
ξ(h)

ξ(0)

)
. (4.9)

On the other hand, the finite-size-scaling argument yields

fboundary= Tfs(T
−1h; g(t)) (4.10)

where fs denotes a scaling function andg(t) corresponds to the renormalized coupling
constant of a perturbational interaction due to the existence of boundaries. Here, we have
taken et asT −1. For the detailed derivation, see appendix B. Now, we take the scaling limit
h → 0 keepingT −1h unity. Then, the boundary free energy takes the following form,

fboundary= hfs(1; g(ln 1/h)) ≡ h8(g(ln 1/h)). (4.11)
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In this scaling limit, from equation (4.9), we also have

fboundary= −h ln

(
ξ(h)

ξ(0)

)
. (4.12)

Comparing (4.11) with (4.12), we obtain the following relationship

8(g(ln 1/h)) = − ln

(
ξ(h)

ξ(0)

)
= − ln

(
1 + 1

4

1

ln 1/h

)
+ o

(
1

ln 1/h

)
(4.13)

to have

fboundary= 1

4

h

lnh
+ o

(
h

lnh

)
. (4.14)

Then, we can calculate the boundary magnetization for a smallh as follows,

mb = −∂fboundary

∂h
' 1

4

1

ln 1/h
. (4.15)

This takes the same form as what we have derived in section 2, including the prefactor.
This logarithmic dependence suggests that there exists a (spatially) localized

perturbational interaction described by

δH = −gφ̂ (4.16)

whereφ̂ denotes the so-called boundary operator [21] and has the dimensionality 1. When
such an operator exists, we can formally derive the form of the renormalized coupling
g(ln 1/h) to obtain

g(ln 1/h) = g

1 − (C/2)g ln 1/h
= 2/C

lnh
+ o

(
1

lnh

)
g(0) ≡ g (4.17)

with a constantC. For the detailed derivation, see appendix B. If8(x) ∝ x for x ∼ 0, we
can obtain

fboundary(h) ∝ h

lnh
. (4.18)

In fact, comparing (4.17) with (4.12), we find8(x) ∝ ln(1 + x) ∝ x for x ∼ 0.
In the (chiral)SU(2) Kac–Moody algebra (level 1), we have such boundary operators

with the dimensionality 1, for example, theSU(2)-current operators [21].

5. Summary

In section 2, we have derived the boundary magnetization and the boundary spin
susceptibility for the half-filling case with a weak magnetic fieldh. As is well known, as
long ash is small, the bulk magnetization is proportional toh [11, 12]. On the other hand,
the boundary magnetization is proportional to−1/ lnh for smallh. Similar behaviours are
realized in the boundary magnetizations of the Heisenberg model and of the supersymmetric
t–J model [10].

In section 3, we have derived the boundary density and the boundary charge
susceptibility for the nearly-half-filling case without magnetic field. It is known that as the
(bulk) filling approaches unity (n → 1 ), the bulk charge susceptibility diverges proportional
to (1 − n)−1 [13]. The boundary charge susceptibility shows the same singularity apart from
the prefactor. This is the same property as that of the supersymmetrict–J model.

We expect that we can treat other cases in the one-dimensional Hubbard model with
boundaries, for example, the nearly half-filling case with a weak magnetic field, the negative-
u case (e.g. [19]) etc using our scheme based on the dressed energies.
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Appendix A.

In the present section, we briefly explain how to deriveỹ+(ω) (2.3).
Using equation (2.8), we can write the integral equation forεs(λ) in section 2, as follows,

εs(λ) = ε(0)s (λ)+
∫

|µ|>λ0

dµR(λ− µ)εs(µ) (A.1)

where the Fourier transformation ofε(0)s (λ) takes the following form

ε̃(0)s (ω) = πhδ(ω)−
∫ +π

−π
dk cos2 k

eiω sink

cosh(uω)
. (A.2)

When we definey(x) andy(0)(x) by

y(x) ≡ εs(λ0 + x) and y(0)(x) ≡ ε(0)s (λ0 + x) (A.3)

we can rewrite equation (A.1) as follows,

y(x) = y(0)(x)+
∫ ∞

0
dν (R(x − ν)+ R(x + 2λ0 + ν))y(ν). (A.4)

SinceR(2λ0 + ξ) is of order O(λ−2
0 ) for λ0 � 1 andξ > 0 (see equations (2.12) and (2.27)),

we can solve perturbationally this integral equation by iteration, as follows,

y(x) = y1(x)+ y2(x)+ · · · (A.5)

y1(x) = y(0)(x)+
∫ ∞

0
dν R(x − ν)y1(ν)

y2(x) =
∫ ∞

0
dν R(x + 2λ0 + ν)y1(ν)+

∫ ∞

0
dν R(x − ν)y2(ν) · · · . (A.6)

When we evaluate the leading term ofy(x) with respect to largeλ0, we only have to
approximatey(x) by y1(x) and solve the following equation,

y(x)−
∫ ∞

0
dν R(x − ν)y(ν) = y(0)(x). (A.7)

By the Fourier transformation, we rewrite this equation into

(1 − R̃(ω))ỹ+(ω)+ ỹ−(ω) = ỹ(0)(ω) (A.8)

where

y+(ω) ≡
∫ +∞

0
dx y(x)eiωx and y−(ω) ≡

∫ 0

−∞
dx y(x)eiωx (A.9)

which are analytic for Im(ω) > 0 and Im(ω) < 0, respectively.
It is known [18] that the following factorization holds,

1 + e−c|ω| = G+
( cω

2π

)
G−

( cω
2π

)
. (A.10)

Here, the functionsG+(z) andG−(z) defined by

G+(z) ≡
√

2π
(− iz

e

)−iz
0( 1

2 − iz)
and G−(z) ≡ G+(−z) (A.11)

which are analytic and also do not take zero, in the upper and lower complexz plain,
respectively.
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In the present case, since we have

1 − R̃(ω) = 1

1 + e−2u|ω| (A.12)

we can rewrite equation (A.8) into the following form,

(G+(ω))−1ỹ+(ω)+G−(ω)ỹ−(ω) = Q+(ω)+Q−(ω) (A.13)

with

G±(ω) ≡ G±
(uω
π

)
(A.14)

and

Q+(ω)+Q−(ω) ≡ G−(ω)ỹ(0)(ω) = G−(ω)e−iλ0ωε̃(0)s (ω). (A.15)

Here,Q±(ω) are analytic for±Im(ω) > 0. Comparing the both sides in equation (A.13),
we can obtain

ỹ+(ω) = G+(ω)Q+(ω). (A.16)

In the present case, we have

Q+(ω) = G−(0)
ω + i0

ih

2
− e− π i

2u λ0
G− (− π i

2u

)
ω + π i

2u

i

u

∫ +π

−π
dk cos2 ke

π i
2u sink + O(e−3 π i

2u λ0). (A.17)

Then, if we neglect less dominant terms for largeλ0, we obtain

ỹ+(ω) ' G+(ω)
i√
2

(
h

ω + i0
− e− π i

2u λ0
h0

ω + π i
2u

)
h0 = 4

√
2π

e
I1

( π
2u

)
. (A.18)

Appendix B.

In the present section, we derive equations (4.10) and (4.17), using the finite-size scaling
technique and the renormalization group method.

According to the finite-size scaling hypothesis, near the critical point, the singular part
of the free energy density is transformed as

fsing

(
1

L1
,

1

L2
, . . . ,

1

Ld
, h, tr

)
= b−dfsing

(
b

L1
,
b

L2
, . . . ,

b

Ld
, bd−xh, b

1
ν tr

)
(B.1)

whered denotes the dimension of the relevant system. We describe an external field and
the reduced temperature byh and tr, respectively. Therefore,fsing can take the following
form,

fsing = L−d
1 f̃

(
L1

L2
, . . . ,

L1

Ld
,Ld−x1 h,L

1
ν

1 tr

)
(B.2)

with some scaling functionf̃ . Especially, ford = 2, we have

fsing = M−2f̃

(
M

L
,M2−xh,M

1
ν tr

)
. (B.3)

In terms of a quantum system on a chain,L andM are proportional to the length of the
chain and to the inverse temperature(T −1), respectively. We expand equation (B.3) with
respect toM/L � 1 as follows,

fsing = M−2
∞∑
n=0

1

n!

(
M

L

)n
f̃n(M

2−xh,M
1
ν tr) f̃n(y, z) ≡ ∂n

∂xn
f̃ (x, y, z)

∣∣∣∣
x=0

. (B.4)
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Then, the following scaling forms of the bulk contribution (fbulk) and the boundary
contribution (fboundary) to the free energy density can be obtained

fsing ' fbulk + 1

L
fboundary L → ∞ (B.5)

fbulk = M−2f̃0(M
2−xh,M

1
ν tr) fboundary= M−1f̃1(M

2−xh,M
1
ν tr). (B.6)

In one-dimensional quantum systems described by theSU(2) Kac–Moody algebra
(discussed in section 4),x = 1 holds. (In fact, we can findfbulk ∝ h2/(2−x) from
equation (B.6) withtr = 0 andM2−xh = 1. On the other hand, it is known [20] that
fbulk is proportional toh2 in such systems.) Then, for the present critical system (tr = 0),
we obtain

fboundary= T f̃1(T
−1h, 0) (B.7)

where we have replacedM−1 with T . Now, we introduce a parametert by et = T −1. This
means that the ‘lattice spacing’a (in the imaginary-time direction) is changed by da = a dt
(namelya ∝ et ). We also take a perturbational interaction into account, whose coupling
constantg are renormalized tog(t), by this scaling. Then, we can express the boundary
free energyfboundary by a scaling functionfs as follows,

fboundary= Tfs(T
−1h; g(t)). (B.8)

We take the scaling limith → 0 keepingT −1h unity. Then, equation (B.8) can be rewritten
into the following form

fboundary= hfs(1; g(ln 1/h)) ≡ h8(g(ln 1/h)). (B.9)

Next, we derive the functiong(t). The action of the relevant model in the two-
dimensional Euculidean spacetime is described by the following form,

S = S0 − g

∫
dτ φ(τ) (B.10)

whereφ(τ) denotes a field defined at(0, τ ) in the spacetime, namelyφ(τ) ≡ φ(0, τ ). The
action in (B.10) corresponds to the Hamiltonian in (4.16). We introduce the bare coupling
constantλ by λ = a1−xg, where a denotes the lattice spacing introduced above andx

corresponds to the dimensionality of the field. Then, the partition function can be formally
written as

Z(λ) =
∞∑
n=0

∫
dτ1 . . .dτn

(λax−1)n

n!
〈φ(τ1) · · ·φ(τn)〉

∏
i<j

2(|τi − τj | − a) (B.11)

where〈· · ·〉 denotes the average with respect toS0. Here, we have introduced the ultraviolet
cut-off in the imaginary-time integral using the step function2(x). When the lattice spacing
a varies as

a → a + a dt (B.12)

we have to change the coupling constantλ as

λ → λ+ (1 − x)λ dt + C

2
λ2 dt + O(λ3 dt) (B.13)

so that we can keep the partition function invariant. Here, we have used that the operator
product expansion of the fieldφ takes the following form,

φ(ra)φ(rb) = C

|ra − ra|x φ(rb)+ · · · . (B.14)
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Then, we obtain theβ function

β(t) ≡ dλ

dt
= (1 − x)λ+ C

2
λ2 + O(λ3). (B.15)

Especially, forx = 1 we find

dg

dt
= C

2
g2 (B.16)

where we have replacedλ by g and have neglected the higher-order terms. Then, the
function g(t) can be obtained as follows

g(t) = g

1 − (C/2)gt
g(0) ≡ g. (B.17)

We substitute (B.17) into (B.9) to have

fboundary= h8

(
g

1 − (C/2)g ln 1/h

)
(B.18)

for x = 1.
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